Complex Analysis: Resit Exam

Aletta Jacobshal 01, Friday 12 April 2019, 18:30-21:30
Exam duration: 3 hours

Instructions - read carefully before starting

- Write very clearly your full name and student number on the envelope and at the top of each answer sheet.
- Use the ruled paper for writing the answers and use the blank paper as scratch paper. After finishing put your answers in the envelope. Do NOT seal the envelope! You must return the scratch paper and the printed exam (separately from the envelope). The exam and its solutions will be uploaded to Nestor in the following days.
- Solutions should be complete and clearly present your reasoning. When you use known results (lemmas, theorems, formulas, etc.) you must explicitly state and verify the corresponding conditions.
- 10 points are "free". There are 6 questions and the maximum number of points is 100 . The exam grade is the total number of points divided by 10 .

Question 1 (10 points)

Consider a function $f(z)$ such that $\operatorname{Re}(f(z)) \geq M$ for all $z \in \mathbb{C}$, where M is a real constant. Prove that if $f(z)$ is entire then it must be constant. Hint: consider the function $e^{-f(z)}$.

Question $2(20$ points)

(a) (8 points) Consider the integral

$$
\operatorname{pv} \int_{-\infty}^{\infty} \frac{e^{4 \mathrm{i} x}}{x^{2}-1} \mathrm{~d} x
$$

Specify and draw a (closed) contour that you can use to compute such an integral with the calculus of residues. Give full justification for your choice of contour. NB: You are not being asked to compute this integral.
(b) (12 points) Evaluate the integral

$$
\mathrm{pv} \int_{-\infty}^{\infty} \frac{x}{(x-\mathrm{i})(x+2 \mathrm{i})(x-3 \mathrm{i})(x+4 \mathrm{i})} \mathrm{d} x,
$$

using the calculus of residues. Give complete arguments.

Question 3 (20 points)

Represent the function

$$
f(z)=\frac{z}{z^{2}-1},
$$

(a) (8 points) as a Taylor series around 0 and find its radius of convergence;
(b) (7 points) as a Laurent series in the domain $|z|>1$.
(c) (5 points) Determine the singularities of the function

$$
g(z)=\frac{\sin z}{z}
$$

and their type (removable, pole, essential; if pole, give the order). Justify your answers.

Question 4 (15 points)

Consider the polynomial $P(z)=z^{4}+\varepsilon(z-1)$ where $\varepsilon>0$. Show that if $\varepsilon<\frac{r^{4}}{1+r}$ then the polynomial P has four zeros inside the circle $|z|=r$.

Question 5 (15 points)

Compute the following integrals along the path γ shown below that lies in the upper half-plane, starts at -1 and ends at $1+\mathrm{i}$. Give complete arguments.
(a) $\left(6\right.$ points) $\int_{\gamma} \frac{1}{z^{2}} \mathrm{~d} z$.
(b) (9 points) $\int_{\gamma} \frac{1}{z} \mathrm{~d} z$.

Question 6 (10 points)

Answer only one of the following two questions:
Question A. Consider the Möbius transformation $f(z)=\frac{1+\mathrm{i}}{-\mathrm{i} z+1}$ on the extended complex plane $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$. After computing $f(0), f(\pm 1)$, and $f(\pm \mathrm{i})$, and expressing them in standard form (real plus imaginary part), determine the image of the closed unit disk $\{z \in \mathbb{C}:|z| \leq 1\}$ under f.
Question B. Prove that if $f(z)$ is entire and agrees with a polynomial $\sum_{j=0}^{n} a_{j} x^{j}$ for $z=x$ on a segment of the real axis, then $f(z)=\sum_{j=0}^{n} a_{j} z^{j}$ everywhere.

Formulas

The Cauchy-Riemann equations for a function $f=u+\mathrm{i} v$ are

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} .
$$

The principal value of the logarithm is

$$
\log z=\log |z|+\mathrm{i} \operatorname{Arg} z .
$$

The generalized Cauchy integral formula is

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} \mathrm{~d} z .
$$

The residue of a function f at a pole z_{0} of order m is given by

$$
\operatorname{Res}\left(f, z_{0}\right)=\frac{1}{(m-1)!} \lim _{z \rightarrow z_{0}} \frac{\mathrm{~d}^{m-1}}{\mathrm{~d} z^{m-1}}\left[\left(z-z_{0}\right)^{m} f(z)\right] .
$$

